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Equations of motion ace obtained for spatially-cucvilineac elastic pipeline con- 
taining nOId.atiOnary flow of a viscous incompressible fluid. The influenceof 
such factors as the rotational inertia and transverse shear strain of the pipe, the 
friction of the fluid on the internal pipeline surface, the pressure of the flow, 

is taken into account (the flow is characterized by parameters averaged over 

the cross-section). The problem is solved in a linear formulation under the 
assumption of nondeformability of the pipeline cross section 

Feodos’ev [l] apparently ficst obtained the equation correctly describing the beam 
vibrations of elastic pipelines with an ideal fluid flow in a parabolic approximation. 

An analysis of this equation resulted in a conclusion about the existence of a critical 

flow velocity (V,), above which the pipe loses the stability of the rectilinear equili- 
brium mode. An expression is found for V* . Fucihec investigations on the dynamics 
of straight and plane-curvilinear pipelines ace contained in [Z-lo] (in the latter case, 

pipes bent into the arc of a circle were considered, as a cule, see [5,6], etc. say). 

The behavior of systems under given laws of fluid motion is studied in [l-7], while 
the change in flow parameters for a given pipe motion (axial vibrations) is studied in 

[8]. The interrelated hydcoelasticity problem, the axlsymmetcic vibrations of a 
” cylindrical shell- viscous fluid flow” 

system, is considered in [9, lo]. 
The majority of the investigations 

mentioned was performed in a linear 
formulation. The exception is [Z] 
in which the parametric tube vibca- 

tions were studied taking the geo- 

/ s metric nonlinearity into account. 

The results of appropriate expeci- 
0 ments ace contained in [ll, 121. 

Fig. 1 

1 M e c h a n i c 8 0 f a p i p e 1 i n e. Let us note three points on a pipe- 
line, P, P, and I’* , where PO is the projection of P on the axial line, and I’* 

is the position of IJ in the deformed state of the pipe (Fig. 1). Let c, ~0, c* be the 
radius-vectoa of these points from a common origin. If u is the displacement vector 

of the point P , then the following relationships ace evident: 

r* L: r + u. 1’ := r. -t qn -+ jb, u =-- Irt + 7.n + wh 
(1.1) 
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Here t, n, b are the dire&ions of a natural trihedral referred to the undeformedstate 
of the axial line of the pipe (t c drO / &); s, q, 5 are the appropriate coordinates of 
the point Y. 

~f~entia~ng (1.1) we find 

dr* = (A? i a& $- eipj) dEi = ei* (q, 5) d&i (dt8 = eijejd&f 

el* h 5) = (1 + ell - 4) t + (qz - XL) n + (e13 + xq) b 
et* (r), 5) = f!f* (i = 2, 3), et* = (6ij + eij) ej (i = 1, 2, 3) 

fe,, ez, e3 = 6 n, b; El, h, E, = S, q, S) 
dr*2 = gij*dgidEj, dr’ = gijd~id~j, gij* = bij + 20ij 

2Eij = eij + eji + eisej, - (1 + bij) aij zz 2Eji, aij = 0 
(i, I’# 1) 

alj = (kejl -; Xej3) q + Xej,c z fZjl (i = 1, 2, 3) 
ell = 6% - kv, e12 = & f ku - XW, cl3 = &P f xv 

eij = auji a%, (i = 2, 3; j = 1, 2, 3; 241, li.2, U3 EE U, D, 20; d 3 d f 8s) 

IIere gif, gij* are metric tensor components, &ii is the Kronecker delta, k, L are 
the curvature and torsion of the axial line, Eij are strain tensor components; unless 
especially stipulated, summation from one to three is understood by the repeated sub- 
scripts. The quadratic components aisejs are not taken into account below. 

The representations 
2.4 = ILo -arl+BL v==~~---~L~~=~~+~py a 2) 
eij = ea. llt0 + eij,lrl + eij,2C7 &ij = &ij,o + &ij,lrl + Fij*,25 
ell,o = uf - kv, elatO = up + ku - xw, e13,@ = IU’ + XV (1.3) 

elbl = --a’, %,l = - &a + WJ), e13,1 = tp’ 

etltl = fi’ f W %2,2 = -@’ - kp), %+,2 = - X’p 

@21,0 = ---a, e22,0 = 0, e23,0 = 4p 

e31,0 = @1 e32r0 = -% e33,O = 0 

Cij,k = 0 (i = 2, 3; i = 1, 2, 3; k = 1, 21 

%l,O = ell,0 = En, 2E12,0 = elPIO + e2ir0 - &2~ 

%3,0 = %3,0 f e31,o = %I 

%I,I = ell,l - k%,,o + %3,0 = ---x~z~ %,2 = +,2 - %2,0 = HIS 

z&12,1 = el2,I - ke21,0 i- xez3,0 = 0, &2,2 = e12,2 = ---2x 

z&13,1 = e13,1 - ke31,O = 2x, %3,2 = e13,2 - xe32,o = 0 

P22,k = 0, e33,r = 0, 6&$k = e32,k = 0 (ti z 0, 1, 2) 

are used for the components ujt eijt aij . The prime here denotes differentiation 
with respect to the length d& E ds of arc of the axial line, and the subscript zero in 
the components uo, vo, zuo is omitted in (1.3), 

It is seen from the re~tio~~ps in the last line of (1.3) that a theory based on the 
expansions (1,2) will result in the consideration of a pipeline with an invariable out- 
line which is in the uniaxial strain state. Hooke’s law for this case can be written in 
the folIowing dimensionless form 

"11 
o- 
- %l, E*2O = Egg0 = ~LE~I / (i - ~1, ENS' z 2koEij (s‘ #if 

Xlj’ = Xlj = mlj I Ipc’lj_lI (i = 2, 3), x0 = 2koX = m / [@I] 
Eif” = cij/’ IPC’], PC’ = (I - !L) E / Iii + I&) (1 - 2u)l 
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Here oij, aijo are the physical stresses and their dimensionless analogs, 
the bending moment and torque, 

mrj, m are 
Ik, I are the section moments of inertia, axial and 

under torsion, E, II, p are the Young’s modulus, Poisson’s ration, and density of the 
material, c is the speed of sound, k” is the coefficient of the tangential stress dis- 
tribution over the pipe section. 

Expressions for the kinetic (2’: and potential (U) energies of pipelines are written 
as follows in dimensionless form: 

Here F is the cross-sectional area of the pipe; the dots denote differentiation with 
respect to the dimensionless time t = cTO / L (T,, is the physical time). The linear 
quantities are referred to the length of the axial line L and the velocity to the speed 
of sound c. 

2. F 1 u f d m e c h P II f c s. In this paper the fluid is considered viscous and 
incompressible, The flow is characterized by parameters averaged over the section. 
If uO is the displacement vector of axial points of the pipeline, then 

V = ug‘ + T;t*, u,‘ = ui’ej (uj’ 5s uj;J, t* = (6~’ + eIj) ej (2.1) 
3 

T1= -+ pp, 
. 

! 
(u’ + n*y ds 

0 
Here uo’ is the transfer velocity vector, V, V are the fluid velocity relative to the 
pipe and the absolute velocity vector (V, V, uo’ are in units of c), p1 is the fluid 

density in units of p , and F, is the area of an inner pipe section in units of F. 
The work of the friction and pressure forces on the virtual ~placem~t bu, can 

be taken into account by the expression 
1 

6.4 - 
s 

(P + Q) duo ds 

0 

dS* / ds = dR* x t* (q, 5) = (Xfiq -+ YjdrJ ej 

dR* = n*dq + b*dc = [(&j + e,j) dq + (S,i + esj) dc] ej 

t* h 5) = fl + ell - krt) t + fela - ~5) n + h3 + xq) b 

XI = e13 + xrl -t 3fez35, YI = -e12 + %3rl -!- XC 

X2 = e23 - lh3 -I- xe3d rl, Y!z = (1 i ed - (k i- xe3d rl 

X3 = - (1 + el,) +- kq - Ice,,<, V, = -e32 + ke,,q - xea15 

(2.2) 

(2.3) 

Here Q, P are linear friction and pressure forces, v, I’ are the drag coefficients in 
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the Darcy-Weissbach formula and the hydraulic radius (see [13], for instance), p is 
the pressure in the flow (in units of I_‘c~), as* is the area of a pipeline area element 
oriented in the direction of the external normal, R* is the radius-vector of the point 

P* in the system ei*, c is the outline of a section drawn through P*, and dR* 
is a vector in a direction tangent to the contour C at the point P* . All quantities 
are referred to the inner surface of the deformed pipe. 

Using the Green’s formula and taking into account that in a linear appro~ma~on 
Xj and I’j depend linearly on q, 5 , we obtain 

(Xidn+Yid~)ei=P ej dn dc = pF,Piej (2.4 

c 

pi = (- l)j-l (k82j + Xj), X 1 = ka, x2 = a’ + xp, x2 = @’ - xa 

Taking account of (2.3) and (2.4), the expression for the virtual work (2.2) becomes 

3. Equationr of motion. Let us use the Hamilton-Ostrogradskii 
pxinciple 

f t 

8J(T+T,-U)dt+ jhddt =0 (3.1) 
to to 

Substi~~g (1.4), (2. I), (2.5) into (3.1) and integra~g by parts, we obtain 

f 1 (3.2) 

Here hk, jr (k = 1, 2) are the pipe flexibility and stability parameters relative to 
the axes b and n , respectively. Because of the arbitrariness of the variation buj,r 
it follows from (3.2) that 

d (at5 I duyat + a (m j ad) i as = m i au + 2~ 
(3.3) 

[(aH / au’) 8u],of = 0, [(aH / au’) 6U1,’ = 0 (U = “j,k) 

(3.4) 
In the case under consideration, (3.3) (the EulerOstrogradskii equations) are the 
desired equations of motion for a pipeline in a fluid flow. The. expressions (3.4) det- 
ermine the initial and boundary conditions of the problem. Using the relationships 
obtained, we represent the equations of motion in the following form (it is assumed 



618 B. A. Gordienko 

U ‘* = U (8E110 - kC120 + jabI) - (1 - U) q1 (3.5) 
V ” = CJ (~E,,~ + k.sl10 - XElsO + jab,) - (1 - o) gs 

W” = 0 (i?E,so + XE~~’ + jaba) - (1 - u) g3 
a” = axlzo + h2E,20, p” = dXlaO - h2E13’ 

(P ‘* = ax” - kXlso/ 2 (u = 1 / (1 + PIF,)) 

6, = a (&z”) + kxx13=‘, 6, = -8 (“xlz’) - x2~130 

bz = --a @x13”) + (@ + x2) x12’ 
q1 = V,’ - u” + (VV,)’ - kVV2 + (1 + 4 ~~~ + xlp / pl 
q2 Z Jr,’ - 2.” + (VI’,)’ + kVV1 - xVV, + ~,,TP - (k + x2) p / p1 
g3 z V3’ - w” + (VV,)’ + XVV, + e,,TV2 + x3p / ('1 

Vj z Uj' + (6,j + elj) V, Uj f Uj,O, f?ij f Eij,o 

Relationships governing the fluid motion in the pipe must be appended to the pipeline 
equations of motion to close the system (3.5). In the approximation under consiflera- 
tion, the following linearized equations 

il = is = i) below): 

aP av 
- at = PlC? x 7 - -g = p1g + 24 (3.6) 

for instance, can be used for this. Here c i is the speed of sound in the fluid taking 
elasticity of the pipeLine into account (in units of e ), and a is a hydraulic drag para- 
meter. For a laminar flow 2~ ‘Z TV z const. 

When solving specific problems, (3.5) and (3.6) should be supplemented by the 
necessary number of initial and boundary conditions. Taking into account that the 

fiuid and pipeline in the model constructed above are considered as spatially one-dim- 
ensional objects, these conditions can be written as follows in the general case: 

Here qj (i = 0, 1, 2) are given functions of the arguments mentioned. 
Therefore, linear equations of motion have been obtained for spatially curvilinear 

elastic pipelines of constant cross-section and arbitrary geometry, which contain a 

viscous incompressible fluid flow. These equations belong to the hyperbolic type and 
may consequently be used not only to study ordinary classical vibrations, but also to 
analyze wave processes associated withthe nonstationary deformation of pipelines. 
The approach followed above evidently allows construction of more refined theories. 
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