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Equations of motion are obtained for spatially~curvilinear elastic pipelinescon-
taining nonstationary flow of a viscous incompressible fluid, The influence of
such factors as the rotational inertia and transverse shear strain of the pipe, the
friction of the fluid on the internal pipeline surface, the pressure of the flow,
is taken into account (the flow is characterized by parameters averaged over
the cross-section), The problem is solved in a linear formulation under the
assumption of nondeformability of the pipeline cross section

Feodos'ev [1] apparently first obtained the equation correctly describing the beam
vibrations of elastic pipelines with an ideal fluid flow in a parabolic approximation,
An analysis of this equation resulted in a conclusion about the existence of a critical
flow velocity (V,), above which the pipe loses the stability of the rectilinear equili-
brium mode., An expression is found for V.. Further investigations on the dynamics
of straight and plane-curvilinear pipelines are contained in [2—10] (in the latter case,
pipes bent into the arc of a circle were considered, as a rule, see [5, 6], etc, say),
The behavior of systems under given laws of fluid motion is studied in [1—7], while
the change in flow parameters for a given pipe motion (axial vibrations) is studied in
[8]. The interrelated hydroelasticity problem, the axisymmetric vibrations of a
" ¢cylindrical shell-viscous fluid flow"
system, is considered in [9, 10].

The majority of the investigations
mentioned was performed in a linear
formulation, The exception is [2]
in which the parametric tube vibra-
tions were studied taking the geo-
metric nonlinearity into account,
The results of appropriate experi-
ments are contained in [11, 12],

Fig.1

1, Mechanics of a pipeline, Letusnote three points on a pipe-
line, P, P, and p*, where P, is the projection of P on the axial line, and P*
is the position of P in the deformed state of the pipe (Fig. 1). Let r,r, r* be the
radius-vectors of these points from a common origin, If u is the displacement vector
of the point P , then the following relationships are evident:

p* = r 4w, =T b qu gh, wsut-on o wh (1.1
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Here t,n, b are the directions of 3 natural trihedral referred to the undeformedstate
of the axial line of the pipe (t = dry / ds); s, m, & are the appropriate coordinates of
the point P.
Differentiating (1. 1) we find

de* = (9r [ 98; + €;;0;) df; = e;* (v, §) d&; (du = e;;0;dE;)

e* M, =00 +ey —kt-+ (g5 —%)n+ (e5+xn)b

e*Mm D =e*(i=2,3), e*=0 +e e (i=1,23

(e, €, e =1t,m,b; &, &, & =517, 1)

dr¥? = g;*d§,dE;, dr? = g, A, dE;, g = g+ 2¢;5

265 = ey + e + epsejs — (1 + 8,7 ;5= 2651, a;; =0 (i, j=F1)

ayj = (ke — nejg) M - %ejpl=ay (=1,2,3)

&y = Ou — kv, ey = 0r -+ ku — nw, €3 = dw -+

e =0u; /] 05 (1=2,3;7=1,2,3; uy, p, ug =u. v, w; 4 =28/ ds)

Here g, g;;* are metric tensor components, § i/ is the Kronecker delta, k, 3 are
the curvature and tomsion of the axial line, ¢;; are strain tensor components; unless
especially stipulated, summation from one to three is understood by the repeated sub-
scripts, The quadratic components e;s¢;s are not taken into account below,

The representations

u=ug—oan+ B8 v=1vy— @l w=1wy+ ¢n (1.2
€1j = €ij0 T eijan + €508, &5 = &35,0 + £550M F €358

e =1u — kv, ep4=0 + ku—xw, e5,=w +ww {(1.3)
&3y = —@, 139 = — (ka + %Q), e3,; = ¢’

eia =B T ko, e = —(¢" —kB), €5, = — xp

€1,0 = —0&, €30=0, ey39=19¢

€0 = By €m0 = —@, 33,0 = 0

ek =0{=2,3,7=1,2,31k=1,2

811,0 = €,0 = 81y, 2813,0 = 13,0 T €21,0 = 28)9,

2813,0 = €13,0 31,0 = 2613

By1,1 = €31~ Kepy 0t Mg = —Yizs 81,2 = €11,z — K2, = Xas
2839,1 = 12,1 ~— Kegy,0 + Heyz0 = 0, 28150 = €y, = ~2Y

2e13,1 = ey, — kegyo = 2y, 2813, = 13,3 — Kezp0 = 0

eyg,1 = 0, €33,k = 0, €23,k == €32,k = 0 (k=0,1,2)

are used for the components u;, ¢;;, €;; ., The prime here denotes differentiation
with respect to the length 4§, = ds of arc of the axial line, and the subscript zero in
the components u,, v, wo is omitted in (1, 3),

It is seen from the relationships in the last line of (1.3) that a theory based on the
expansions (1, 2) will result in the consideration of a pipeline with an invariable out-
line which is in the uniaxial strain state, Hooke's law for this case can be written in
the following dimensionless form

€117 = 813, £39° = £45° = pey; / (1 — ), 85" = 2keey; (iF))
%" =Yg = myyl el = 2,3), x° = 2key = m /[ [pc]
& = 0/ lp*], p =1 — W E/ {1+ p) (1 —2p)]
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bo= (1 —20) K/ [2 (1 + )]
a=\[epar =23, 1=n+1
F

Here o;;, ¢;;° are the physical stresses and their dimensionless analogs, m,;, m are
the bending moment and torque, i, / are the section moments of inertia, axial and
under torsion, £, i, p are the Young's modulus, Poisson's ration, and density of the
material, ¢ is the speed of sound, %° isthe coefficient of the tangential stress dis-
tribution over the pipe section,

Expressions for the kinetic (7} and potential (U) energies of pipelines are written
as follows in dimensionless form;:

1 1

T =g S (+ SS wiaF)ds, U=-g S (+ SS ooyt dF)as Y
v F 0 F

Here F is the cross-sectional area of the pipe; the dots denote differentiation with

respect to the dimensionless time ¢ = ¢Ty/ L (T, is the physical time), The linear

quantities are referred to the length of the axjal line £ and the velocity to the speed

of sound c.

2, Fluid mechantics, Inthis paper the fluid is considered viscous and
incompressible, The flow is chamacterized by parameters averaged over the section,
If u, isthe displacement vector of axial points of the pipeline, then

Ve=u + V¥, w' =uje; (u) =u;-g), th=(01+e)e; (2.1)
1
i *
TI == ‘2— plF,_ S (u' + Vf,*)n ds
]
Here wuy is the transfer velocity vector, v, V are the fluid velocity relative to the
pipe and the absolute velocity vector (V, V, u," are in units of ¢), p, is the fluid
density in units of p, and F,; isthe area of an inner pipe section in units of F.
The work of the friction and pressure forces on the virtual displacement du, can
be taken into account by the expression

1 (20 2)
84 = S (P 4- Q) dug ds
0
d8% ) Y oo
P= P E% ds 1 Q == TplFlygt* ('C =3 g‘-—-)
(o4

dS* [ ds = dR* X t* (y, {) = (X;dn - Y;dQ) e;

dR* = n*dn + BT = [0 + ex)) dn + 05 -+ e) Al ¢
th(m, 0) = (1 + ey — E) t+ (e — xD) n + (e - xm) b

Xy = e13 + 1 + negel, Yy = —eyp + Regn + %{

Xy = eg3 — (kegy -+ %ep) M, Yo = (1 + egy) — (k -+ %eg)
Xg= — (1 + eyy) + kn — xen{, Yy = —eg + kegm — %exn{

3

Here Q, P are linear friction and pressure forces, v,r are the drag coefficients in
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the Darcy—Weissbach formula and the hydraulic radius (see [13], for instance), p is
the pressure in the flow (in units of pc?), dS* is the area of a pipeline area element
oriented in the direction of the external normal, R* is the radius-vector of the point
P* in the system e;*, C is the outline of a section drawn through P*, and dR*
is a vector in a direction tangent to the contour C at the point P*, All quantities
are referred to the inner surface of the deformed pipe.
Using the Green's formula and taking into account that in a linear approximation
X; and Y; depend linearly on 1, {, we obtain

8Y X, 9,4
P=p§(den+Y§d§)e}.=pSS(—Sa}lj———éé-)ejdndZ;:pFleej (2.4)
c 1
Pyj= (— )71 (k87 + %), = ha, xy=0 +xP, =P —xa
Taking account of (2, 3) and (2.4), the expression for the virtual work (2, 2) becomes
i (2.9)
04 =pFy S [(61’ - ) VR (— 171 (k8 + %)) Ti—] du;ds
0

8, Equations of motfon , Letususethe Hamilton—Ostrogradskii
principle

4 4
65(T+T1—U)dt+5l6/ldt30 3.1
to ig

Substituting (1.4), (2. 1), (2,5) into (3, 1) and integrating by parts, we obtain

L Ctrom 8 j0H\ 0 [oH (3.2
'-;—S [W“W(’W)"?F(W)+2A]5“d3d‘+

o
CRVE TR T NI P
0

0

o~

-~

H = sz (LE;?R —— 8i§,k8:j,k) + 01y [R'j,(; + (‘51? + elf) VB, us= aj,k
A= Ay = 800, Fy [y + e1) VR (— 07 (8 4 %) p / py)
=T/ (FL) =1/M3 L=1(G,7=1,23 k=012

Here My, jx (k= 1, 2) are the pipe flexibility and stability parameters relative to
the axes b and n, respectively, Because of the arbitrariness of the variation du;
it follows from (3, 2) that

8 (OH [ au')jat-+ o (6H [ ow') [ ds = oH [ du+ 24 (3.3)

[(0H / u’) dul,t = 0, [(8H /ouw')dul =0 (u= u; 4 (3.4)

in the case under consideration, (3,3) (the Euler—Ostrogradskii equations) are the
desired equations of motion for a pipeline in a fluid flow. The expressions (3.4) det-
exmine the initial and boundary conditions of the problem. Using the relationships
obtained, we represent the equations of motion in the following form (it is assumed
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i =732 =1]) below):

u' = 0 (9ey° — ke + b)) — (1 — 0) ¢y (3.9)
v = 0 (08,° + keyy® — negs® - j2by) — (1 — 0) g,

w' = 0 (098;5° + %epp° + j2by) — (1 — 0) g4

o't = 0yy,° + Ay, BT = 0ya® — Alegy®

@ =0x" — k1s°/ 2 (o=1/ (14 pFy))

by = 8 (kae®) -+ Fnyas®, by = —3 (ny1.°) — #%yy5°

by = —0d (¥y3°) + (K2 + %®) %p0°

=V —u" F (VV) —kVVy+ (1 +e) V2 %p / py

g = Vo' — o7+ (VVy) + kVV, — «VV,y + e)01V2 — (K + %) p/ g
g3 = Vi' — w'" A+ (VV3) + xVV, + e15tV2 + %3p / py

Vi=u; + b7 +en) V, uj=uje, €= €50

Relationships goveming the fluid motion in the pipe must be appended to the pipeline
equations of motion to close the system (3.5). In the approximation under consicera-
tion, the following linearized equations

ap 14 dap < oV )

—r=nt g, e =hlg + 2V (3-6)

for instance, can be used for this, Here ¢, is the speed of sound in the fluid taking
elasticity of the pipeline into account (in units of ¢ ), and a is a hydraulic drag para-
meter, For a laminar flow 24 =~ TV = const.

When solving specific problems, (3.5) and (3, 6) should be supplemented by the
necessary number of initial and boundary conditions, Taking into account that the
fluid and pipeline in the model constructed above are considered as spatially one-dim-
ensional objects, these conditions can be written as follows in the general case:

Y (s, 0) =g (s), ¥ (s, 0) = %o’ ()
lp (07 t) :'q)l (t)v ‘P (11 t) = ‘Pz (t)
(‘PEM, U, wv a' ﬁ’ (P’pv V)

Here ; (f = 0,1, 2) are given functions of the arguments mentioned.

Therefore, linear equations of motion have been obtained for spatially curvilinear
elastic pipelines of constant cross-section and arbitrary geometry, which contain a
viscous incompressible fluid flow., These equations belong to the hyperbolic type and
may consequently be used not only to study ordinary classical vibrations, but also to
analyze wave processes associated withthe nonstationary deformation of pipelines,
The approach followed above evidently allows construction of more refined theories.
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